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 Proof of the Superposition Principle: 

o Let 1y and 2y be solutions to a linear homogeneous differential equation. 

o Lemma 1. 1cy is a solution to the differential equation. 

o Lemma 2. 21 yy  is also a solution to the differential equation. 

o Thus 2211 ycycy  is also a solution to the differential equation. 

o Suppose that 1y , 2y ,…, ny are all solutions of a linear homogeneous differential 

equation. Then, any linear combination of these solutions is also a solution (this 

result is trivial based on what we previously proved). 

 i.e. nn ycycycy  ...2211 is a solution 

 Proof of Lemma 1: 

o 1cy is a solution to 0)(')(...)( )1()(   yxQyxPyxAy nn iff 
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is true. 

o Given that 1y is a solution to 0)(')(...)( )1()(   yxQyxPyxAy nn , then
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must be true. 
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 (multiply by c). 
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. Apply linearity of 

derivatives. 

o 1cy is a solution to 0)(')(...)( )1()(   yxQyxPyxAy nn  

 Proof of Lemma 2: 

o 21 yy  is a solution to 0)(')(...)( )1()(   yxQyxPyxAy nn iff 
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is true. 

o Given that 1y and 2y are solutions to 0)(')(...)( )1()(   yxQyxPyxAy nn , 
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must be true. 
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. Apply 

linearity of derivatives. 

o 21 yy  is a solution to 0)(')(...)( )1()(   yxQyxPyxAy nn  

 

 

 

 

 

 

 


