Proof of the Superposition Principle

- Proof of the Superposition Principle:
 - Let y_1 and y_2 be solutions to a linear homogeneous differential equation.
 - Lemma 1. cy_1 is a solution to the differential equation.
 - Lemma 2. $y_1 + y_2$ is also a solution to the differential equation.
 - Thus $y = c_1 y_1 + c_2 y_2$ is also a solution to the differential equation.
 - Suppose that $y_1, y_2, ..., y_n$ are all solutions of a linear homogeneous differential equation. Then, any linear combination of these solutions is also a solution (this result is trivial based on what we previously proved).
 - i.e. $y = c_1 y_1 + c_2 y_2 + ... + c_n y_n$ is a solution
- Proof of Lemma 1:
 - cy_1 is a solution to $y^{(n)} + A(x)y^{(n-1)} + ... + P(x)y' + Q(x)y = 0$ iff $(cy_1)^{(n)} + A(x)(cy_1)^{(n-1)} + ... + P(x)(cy_1)' + Q(x)cy_1 = 0$ is true.
 - Given that y_1 is a solution to $y^{(n)} + A(x)y^{(n-1)} + ... + P(x)y' + Q(x)y = 0$, then $y_1^{(n)} + A(x)y_1^{(n-1)} + ... + P(x)y_1' + Q(x)y_1 = 0$ must be true.
 - $cy_1^{(n)} + A(x)cy_1^{(n-1)} + \dots + P(x)cy_1' + Q(x)cy_1 = 0$ (multiply by c).
 - $\circ (cy_1)^{(n)} + A(x)(cy_1)^{(n-1)} + \dots + P(x)(cy_1)' + Q(x)cy_1 = 0.$ Apply linearity of derivatives.
 - $\therefore cy_1$ is a solution to $y^{(n)} + A(x)y^{(n-1)} + \dots + P(x)y' + Q(x)y = 0$
- Proof of Lemma 2:
 - $y_1 + y_2 \text{ is a solution to } y^{(n)} + A(x)y^{(n-1)} + \dots + P(x)y' + Q(x)y = 0 \text{ iff}$ $(y_1 + y_2)^{(n)} + A(x)(y_1 + y_2)^{(n-1)} + \dots + P(x)(y_1 + y_2)' + Q(x)(y_1 + y_2) = 0 \text{ is true.}$
 - Given that y₁ and y₂ are solutions to y⁽ⁿ⁾ + A(x)y⁽ⁿ⁻¹⁾ + ... + P(x)y'+Q(x)y = 0, then y₁⁽ⁿ⁾ + A(x)y₁⁽ⁿ⁻¹⁾ + ... + P(x)y₁'+Q(x)y₁ = 0 and y₂⁽ⁿ⁾ + A(x)y₂⁽ⁿ⁻¹⁾ + ... + P(x)y₂'+Q(x)y₂ = 0 must be true.
 ○ (y₁⁽ⁿ⁾ + A(x)y₁⁽ⁿ⁻¹⁾ + ... + P(x)y₁'+Q(x)y₁) + (y₂⁽ⁿ⁾ + A(x)y₂⁽ⁿ⁻¹⁾ + ... + P(x)y₂'+Q(x)y₂) = 0

$$\circ \quad y_1^{(n)} + y_2^{(n)} + A(x)(y_1^{(n-1)} + y_2^{(n-1)}) + P(x)(y_1' + y_2') + Q(x)(y_1 + y_2) = 0$$

- $\circ (y_1 + y_2)^{(n)} + A(x)(y_1 + y_2)^{(n-1)} + \dots + P(x)(y_1 + y_2) + Q(x)(y_1 + y_2) = 0.$ Apply linearity of derivatives.
- $\therefore y_1 + y_2$ is a solution to $y^{(n)} + A(x)y^{(n-1)} + ... + P(x)y' + Q(x)y = 0$